Measurements of the Radio-production Cross Section of 193 Ir $(n, n'){}^{193m}$ Ir between 0.5 and 9 MeV

R.P. Rera,¹ M. Febbraro,¹ D. Holland,¹ J. Manfredi,¹ W. Dailey,¹ J.W. McClory,¹

C. Yeamans,² R. deBoer,³ D. Robertson,³ M. Matney,³ and C. Mueller-Gatermann⁴

¹Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio
²Lawrence Livermore National Laboratory, Livermore, CA
³University of Notre Dame, Dept of Physics and Astronomy, South Bend, IN

⁴Argonne National Laboratory, Lemont, IL

Iridium has historically served as a useful neutron fluence monitor due to its ability to probe the thermal, fission, and fusion energy regimes through (n, γ) , (n, n'), and (n, 2n) reactions. ¹⁹³Ir has a $J^{\pi}=11/2$ - metastable state $(t_{1/2}=10.5 \text{ days})$ that can be induced from (n, n') reactions and emits a 9.18 keV x-ray via internal conversion. The effectiveness of iridium as a neutron fluence monitor is dependent on the accuracy the (n, n') cross section. Recent measurements of the ¹⁹³Ir $(n, n')^{193m}$ Ir radio-production cross section indicate a discrepancy between ENDF, model predictions, and previous measurements. Further measurements are needed to address this discrepancy. An experiment to measure the ^{193m}Ir radio-production cross section was conducted at the University of Notre Dame St.ANA 5U accelerator laboratory. Neutrons from ⁷Li $(p, n)^7$ Be and ¹³C $(\alpha, n)^{16}$ O was used to bombard iridium foils from 0.5-9 MeV. Measurements were normalized to Gold, Nickel, Iron, and Indium reference foils. Results from this measurement will be presented.